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Abstract. Liberal arts universities possess a vast catalog of courses
from which students can choose. The common approach to surfacing
these courses has been through traditional keyword matching informa-
tion retrieval. The course catalog descriptions used to match on may,
however, be overly brief and omit important topics covered in the course.
Furthermore, even if the description is verbose, novice students may use
search terms that do not match relevant courses, due to their catalog
descriptions being written in the specialized language of a discipline out-
side of their own. In this work, we design and user test an approach
intended to help mitigate these issues by augmenting course catalog
descriptions with topic keywords inferred to be relevant to the course
by analyzing the information conveyed by student co-enrollment net-
works. We tune a neural course embedding model based on enrollment
sequences, then regress the embedding to a bag-of-words representation
of course descriptions. Using this technique, we are able to infer key-
words, in a system deployed for a user study, that students (N= 75)
rated as more relevant than a word drawn at random from a course’s
description.

Keywords: Course search · Inferred keywords · Latent topics ·
Course2vec · Skip-gram · Higher education · Recommender systems

1 Introduction

The course catalog is often the first resource consulted by current and prospective
students when wanting to familiarize themselves with the topical offerings of a
university. With many universities offerings thousands of distinct courses over
the span of several years, browsing through the description of each is untenable.
Instead, classical information retrieval (i.e., search) using keyword matching is
now offered at many, but not all, institutions. A keyword matching approach;
however, is only as good as the words the description contains and the users’
ability to craft a query using those words. Many course descriptions can be
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overly brief, omitting topical terms from the description that are nevertheless
contained in the course. Furthermore, for novice students, it can be difficult to
gauge the similarity of courses in different departments because of the superficial
differences in how different disciplines describe the same material.

In this paper, we seek to mitigate the shortcomings of topic omission and non-
standardized keywords across disciplines in catalog descriptions by leveraging the
regularizing power of machine learned embeddings. We apply neural embedding
models to historic sequences of student course enrollments in order to embed
courses into a space regularized by abstract features, or concepts, associated
with courses. We then regress from this space to the space of course descriptions
in order to add semantics to the course vectors. These semantics become the
keywords which can be added to an enhanced university course search.

Showing the utility of a data mining, or technology enhanced learning app-
roach in the real-world, sometimes called “closing the loop,” is an objective of
growing emphasis in the community. To integrate this modeling process into a
larger design scheme that includes the deployment of this enhanced course search
feature in a production level course recommender system, we first conduct a user
study (N = 75) to measure the degree to which our model’s inferred keywords
correlate with student perceptions of relevance. Choosing six courses they have
completed, students rated the relevance of keywords for each course generated
from several sources, including random keyword selection baselines. Using these
data, we were able to identify a probability threshold for which generated key-
words were statistically significantly more relevant than words chosen randomly
from the course’s description. We use this threshold to dynamically determine
the number of inferred keywords to display per course in the deployed search
feature. The overall structure of the paper follows the process we followed for
designing the enhanced search, outlined in Fig. 1.

Fig. 1. Design process for the enhanced search feature

2 Related Work

Recommendation of courses and course grade prediction in formal higher edu-
cation contexts has become an active area of research in data mining applied
to education [1,4,15], with neural network based approaches to recommenda-
tion manifesting in deployed systems [13]. The degree of adaptivity is a sig-
nificant element in deciding the type of recommendation experience a student
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will receive. Collaborative-based approaches, for example, have high adaptivity,
whereby a student’s course history is evaluated as input and suggestions are
generated based on what courses the student is predicted to most likely take
next. Similar approaches to social activity recommendation [5] or within-course
resource recommendation have also been proposed [17]. Some shortcomings with
a collaborative-based course recommendation approach are that the predicted
courses may likely be courses the student already knows about, and furthermore
they may be biased towards courses already popular at the university. Search is
a different kind of approach, one in which a user’s query represents an object
(or topic) on the boundary of what the user is familiar with. In this case there
is minimal adaptation, other than to the query provided. Systems taking this
more knowledge-based or simple information systems approach have also seen
emergence in the real-world, with one providing course evaluation and grade
distributions for queried courses [3].

However, users may still experience problems in finding the information they
are looking for with the classical search experience [16]. The typical approach
can be improved through augmenting the search interface itself using assistive
widgets [6] or by adding inferred keywords to course description, and allowing
them to be matched on by the user’s query. This adding of keywords to an
object can be thought of as a form of classical semantic annotation [7], but
with big data and modern machine learning used to generate the semantics.
Mesbah et al. [8] also leverage the tagging of educational resources, such as
MOOCs, using more classical natural language processing to provide the end
user a synopsis of the course content. This tagging could alternatively be framed
as a form of topic modeling. Motz et al. [12] provide an approach in this vein most
relevant to ours in which they use students’ course enrollments as a signature
with which to learn themes of studying using Latent Dirichlet Allocation (LDA)
[2]. Our approach is closer to the user experience of an information system but
using machine learning techniques more commonly seen in collaborative-based
models. We substitute LDA with the more contemporary machine regularization
of skip-gram models [10] and take the work further in practical application by
implementing, evaluating, and deploying it on campus.

Skip-gram neural networks are a natural choice for learning concepts, or
regularities in sequential data. In the canonical example of their applica-
tion to natural language, vector arithmetic, vector[KING] − vector[MAN ] +
vector[WOMAN ], results in a vector closest to vector[QUEEN ] [11]. In essence,
the embedding has learned the concept of gender and royalty, albeit abstractly as
a geometric regularity. By applying this approach to course enrollment sequences
(e.g., CS101 MATH88 ECON141), we expect the skip-gram to learn similar
types of concepts about courses, which we will then associate with words used
to augment a course’s searchable description. Prior work has found success in
embedding courses in this manner, validating the model by its agreement with
campus sources of course similarity [13]. We extend this application into course
search and contribute a novel tuning of the semantic association process.

mdong@berkeley.edu



Inferring Latent Keywords from Enrollment Networks 483

3 Models

Our approach to generating inferred course keywords comprises of three funda-
mental modeling elements: (1) a vector representation of courses learned from
enrollment histories (2) a bag-of-words representation of course catalog descrip-
tions (3) a model that translates from the enrollment-based representation to
the catalog-based representation. This is essentially a machine translation, not
between languages [9], but between a course representation space formed from
student enrollment patterns and a semantic space constructed from instructors’
descriptions of the knowledge imparted in each course.

3.1 Course2Vec

The course2vec model involves learning distributed representations of courses
from students’ enrollment records throughout semesters by using a notion of a
enrollment sequence as a “sentence” and courses within the sequence as “words”,
borrowing terminology from the linguistic domain. For each student s, a chrono-
logical course enrollment sequence is produced by first sorting by semester then
randomly serializing within-semester course order. Then, each course enrollment
sequence is trained on like a sentence in a skip-gram model. In language models,
two word vectors will be cosine similar if they share similar sentence contexts.
Likewise, in the university domain, courses that share similar co-enrollments,
and similar previous and next semester enrollments, will likely be close to one
another in the vector space. Course2vec learns course representations using a
skip-gram model by maximizing the objective function of context prediction
over all the students’ course enrollment sequences.

It is important to stress that our method of producing a course vector from
enrollments (i.e., course2vec) does not use any course description information. It
is based only on sequences of course IDs, with no natural language used. The gen-
eralizing principal is that patterns of student collective course taking can produce
representations of courses containing abstract concepts [14] of relevance to stu-
dent course search. The trick to exploiting this is to associate these abstract con-
cepts with concrete keywords, accomplished by the translation model, explained
in the section after the next.

3.2 Bag-of-Words Representation

We represent course catalog descriptions using the simple but indelible approach
of bag-of-words and its variants. To create a course description vector, the length
of the number of unique words across all items serves as the dimension of the
vector, with a non-zero value if the word in that vocabulary appears in the
description. We experiment with the description vector as binary or as one of
two weighting schemes described here:

– binary: value of 1 indicating that the term occurred in the document, and 0
indicating that it did not.
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– tf-idf scheme [16], the product of term frequency and inverse document fre-
quency, which increases proportionally to the number of times a word appears
in the document and is offset by the frequency of the word in the corpus and
helps to adjust for the fact that some words appear more frequently in general.

– custom weighting scheme such as tf-bias:

tf − bias =
(
number of occurences of words

total word count

)−bias

(1)

Empirically, lower bias has been found to produce more general words whereas
higher bias produced more specific terms [14], which may be useful in surfac-
ing course semantics at different levels of granularity.

We evaluate all three variants in our model selection phase.

3.3 Translation Model

Our premise is that there are useful concepts learned in the embedding of
course2vec, but these concepts left in number form are not associated with any
semantics. To associate the patterns learned in course2vec with semantics, we
apply a translation from the course2vec vector to its respective natural language
course description vector.

We use a multinomial logistic regression to conduct this semantic mapping,
where the skip-gram based course vectors are used as input and the correspond-
ing descriptions of every course as bag-of-word encodings are the multi-hot labels
being predicted. After this model is trained, the probabilities of each word in the
vocabulary belonging to a skip-gram course vector can be computed by consult-
ing the softmax probability distribution over the entire vocabulary. Using this
probability distribution, it is now possible to find the high probability words
predicted based on course2vec which are NOT in the course description. These
words can subsequently serve as inferred keywords in our enhanced course search.

Logistic regression is used to represent translation between languages because
the spaces being translated to and from are linear vector spaces (skip-grams have
no non-linear activations). However, in case the relationship between spaces in
the course domain is non-linear, we evaluate a single hidden layer neural network
with non-linear activation as an additional candidate translation model in our
optimization experiments.

4 Experimental Environments

4.1 Off-Line Dataset

Course descriptions were sourced from the official campus course catalog API
and the data was pre-processed in the following steps: (1) concatenate each
description with its respective title (2) remove stop words (3) remove punctu-
ation (4) tokenize and collect unigram and bigram phrases to constitute our
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vocab (5) finally compile the binary value vector, tf-idf vector, and tf-bias vector
representation for each course. In addition, we filter out certain types of courses
including freshman seminars and special topics courses that shared identical
generic departmental descriptions and titles. A total of 6,582 courses remained
in our final course dataset.

The course embeddings used in this experiment were trained and optimized
to a source of validation from a previous study [13]. We inherit this course
embedding from that work, where a vector size of 229 was used.

While the above are data artifacts used for the experiments reported in this
paper, the data are automatically refreshed at the university, and models re-
trained as part of the regular maintaining of the search feature in the production
system, described more in the next section.

Fig. 2. A prototype of the course search feature before model tuning and user testing

4.2 Online Environment

Our first step, after inheriting a course embedding, was to apply a machine trans-
lation to the bag-of-words binary space without any optimization and design
a search interface to surface the predicted words not in the course description.
Figure 2 shows this prototype of the intelligent search feature as part of the cam-
pus course recommender system. Users may enter queries into the search box,
which are string matched to terms in the course title, description, and inferred
keywords and returns courses where any matches exist, prioritizing results that
match to multiple fields. The inferred keywords serve as an additional source of
semantics to match on that is intended to improve the relevancy and accessibility
of the returned results. As seen in Fig. 2, the courses returned from the queries
are based on keywords that do not necessarily belong to the course description,
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but are still relevant to the user through the inferred keywords. The keywords
in this demo were produced by a model trained under default settings and val-
idated by inspection. We simply select the top 10 predictions from the model
to display in the “inferred keywords” column. This prototype exists on a beta
testing server. Before deploying it to the production server, we sought to first
refine the translation model and perform a user study to insure that the inferred
keywords were of real relevance to students at the University.

5 Offline Model Optimization

In this section, we conduct offline predictive model experiments intended to
optimize for heuristics pertinent to online user relevancy ratings. The goal was
to select a single model after this optimization, that would serve as the model
evaluated by real-world users in the user study phase. Because there is no offline
data on student’s perceptions of keyword relevancy, we came up with heuristics
to optimize to as substitutes.

5.1 Tuning Parameters

Using the inherited course embeddings and course description vectors, we trained
multinomial regression models and neural networks to translate from embedding
to descriptions.

We experimented with different NLP representations of course catalog
descriptions, serving as the labels for the translation model. The course rep-
resentations were already pre-optimized so we focused on searching hyperpa-
rameters for the bag-of-words representations of their respective descriptions.
We sweep a range of max document-frequency (max-df) for building the col-
lective vocabulary, which ignores terms that have a document frequency strictly
higher than the given threshold, filtering out common, often generic words found
across all catalog descriptions such as “student”, “semester”, and “course” that
are not useful as search keywords. Bag-of-words vectors are also characterized
using a range of tf-bias weights and also tf-idf and binary values. We explored
using a multinomial logistic versus a single hidden layer neural network to serve
as the translation model. Hyperparameters in the grid search included max-df,
BOW representations (binary, tf-idf, tf-bias), and translation models (multino-
mial logistic, 1 hidden layer neural net), totalling 144 experiment runs.

5.2 Model Selection Heuristics

In order to select which model to use in our user study, we produced the fol-
lowing heuristic metrics for each (all ranging from 0 to 1) and then selected the
model with the highest sum of all metrics. The metrics were recall@max length,
precision@10, department frequency, and distribution similarity. The rationale
for their use was as follows:
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Precision and Recall. Precision and recall are meant to capture the most
direct evidence of relevancy of the inferred keywords to its respective course.
Precision@10, where 10 is the likely number of keywords to be shown in the
search interface, is the proportion of keywords in the top 10 model predictions
that also appear in the course description. Recall@max len, where max len is
the maximum length of any description (182 words), represents the proportion
of keywords found in the description if the model were to predict the entire
description.

Using precision and recall alone is not sufficient in our case. A high, or perfect
score for either would indicate that our model has simply learned the description
of a course without capturing any additional signal surfaced from behavioral pat-
terns. To measure the generalizability of our model in uncovering hidden seman-
tics, we utilized two other quantifiable metrics of success, department frequency
and distribution similarity, described next.

Department Frequency. Department frequency is the standard measure of
document frequency in text mining, replacing document with course department.
The department frequency of word wi is:

dept freq(wi) =
number of departments with wi

number of total departments
(2)

A department frequency of 1 indicates that a particular keyword appeared
across every department. For every model trained, the average department fre-
quency was calculated across all the words predicted. This metric is intended
to measure the ability of the model to identify words from related disciplines
and therefore extrapolate from the original course itself. This is intended to help
overcome the lack of standardization found in the language used to describe
similar courses in different departments.

Distribution Similarity. Distribution similarity is the cosine similarity
between the vector of keyword frequencies from the model’s predictions and the
vector of uniform frequencies where each entry is the total number of possible
keywords to be predicted, divided by the number of unique keywords actually
predicted. This metric is intended to help us select a model that offers a more
equal spread of keywords and does not overly favor a limited vocabulary, which
was observed to occur during early development training phases.

Since we want to maximize each one of these metrics, our single value used
for model selection is the sum across all four. Simply taking the sum has the
convenient property that the combined distribution looks similar when training
the regression model and the neural net, but the two are distinguishable when
stratifying by each of the metrics.
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Fig. 3. Distribution of keyword evaluation metrics colored by translation model (Color
figure online)

Model Evaluation. The experiment proceeds with the algorithmic optimiza-
tion of our model via a grid search over the selected hyperparameters and the
calculation of the described metrics for every hyperparameter set. For testing,
we elected to test the model both with and without cross-validation. Because
the use case of the search feature involves predicting course keywords only for
existing courses rather than new courses, the model is trained on the entire
dataset to allow it to learn all possible words across the collective descriptions.
For thoroughness, we repeated the same grid search with 5-fold cross-validation
but there was insufficient variance across each of the metrics to perform model
selection.

Results of the hyperparameter search is shown in Fig. 3, where we find that
a logistic regression model outperforms the neural network in terms of our rele-
vancy heuristics (recall and precision) but the neural net outperforms the regres-
sion model by our heuristics of generalizability (department frequency and dis-
tribution similarity). We opt to use the regression model to err on the side of
relevance so users are not off-put by seemingly unrelated results returned to
their queries. Our optimal model and corresponding hyperparameters received
the highest score sum, but was not the max precision nor recall model.

6 User Study

Following the offline experiment model selection, we follow up with a human
judgment evaluation to better gauge how the model results are aligned with
students’ perception of relevance. A user study was conducted during which
students were asked to rate keywords belonging to five different groups:

1. Model Sorted (All): Top five overall keywords as predicted by the model.
2. Model Sorted (Description): Top five words in the description in order of

likelihood as predicted by the model.
3. Model Sorted (Non-Description): Top five words not in the description in

order of likelihood as predicted by the model.
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4. Random (Description): Five random words from within the description.
5. Random (All): Five random words across all collective descriptions.

An example of these keyword groups for a select course are shown in Table 1.

Table 1. Keywords drawn from each of our five groups for STAT 135

Course: STAT 135 - Concepts of Statistics

Course Description: A comprehensive survey course in statistical theory and
methodology. Topics include descriptive statistics, maximum likelihood estimation,
non-parametric methods, introduction to optimality, goodness-of-fit tests, analysis
of variance, bootstrap and computer-intensive methods and least squares
estimation. The laboratory includes computer-based data-analytic applications to
science and engineering

Model Sorted (All): regression, statistics, random, statistical, estimation

Model Sorted (Description): statistics, statistical, estimation, variance, tests

Model Sorted (Non-Description): regression, random, real, linear, discrete

Random (Description): course, engineering, includes, methods, computer-based

Random (All): diverse collection, topics problems, year credit, planning research,
user interfaces

The random (all) words represent a baseline relevancy score. We expect the
description groups to perform much better than this baseline and desire that the
model predicted non-description words are also better than randomly selected
words. The random (description) group provides the second benchmark to com-
pare our model sorted non-description group to, quantifying how much value our
enhanced search may add on top of the catalog description. These groups are
not necessarily disjoint; the unique of all 5 groups were taken and randomized
before showing them to the student, with an average of 18.5 unique keywords
per course.

6.1 Study Design

Undergraduates were recruited from popular student Facebook groups to par-
ticipate remotely in our keyword rating study in exchange for a $10 Amazon
gift certificate. Study participants logged into the main AskOski recommender
site using their University credentials in order to access the survey. The survey
system looked-up the courses the student had taken and then asked them to
choose six to rate the keywords of. Figure 4 shows the course selection interface
for the study. Student were asked to rate solely on their experience with the
class to prevent bias in keyword ratings whereby a student may be tempted to
simply rate a word as relevant only if it appeared in the description.

For every keyword, students were asked for their five point Likert scale agree-
ment with the following statement: This keyword is relevant to the course, where
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Fig. 4. Personalized survey interface after user authentication

a score of 1 corresponded with Not Relevant At All and a score of 5 corresponded
with Very Relevant. A total of 75 students participated in our study, rating a
total of 8,355 keywords.

6.2 Results

The average student relevancy ratings of keywords from each of the five groups
is shown in Fig. 5. All three Model Sorted groups, and the Random (Descrip-
tion) group, scored between a 3 (neutral) and 4 (relevant) in keyword relevance.
Selecting keywords at random from the entire vocabulary, Random (All), scored
a 1.836 (below “Not Very Relevant”), representing students’ lower bound for
perception of relevance. All pairwise differences between keyword groups were
statistically significantly reliable at p < 0.05, after applying a Bonferroni correc-
tion for multiple (10) Wilcoxon rank sum tests, except between Model Sorted
(All) and Random (Description) groups, which was not statistically separable
(p = 0.019).

The benefit of the model-based approach in terms of improving relevance
of chosen keywords can be quantified by the difference in ratings between the
random within-description selection group, Random (Description), 3.612, and
the model-based within-description selection group, Model Sorted (Description),
3.916. A breakdown of the proportion of each rating level by group can be seen
in Fig. 5. The majority (51%) of Model Sorted (Description) keywords received
a 5 rating (Very Relevant), compared to Random (Description), for which 42.1%
were Very Relevant. Model Sorted (Non-Description) has a much lower propor-
tion of Very Relevant ratings (31.5%), but still considerably higher than the
Random (All) baseline, with 7.3%, and with 62.3% of keywords in its group
receiving the lowest relevancy rating as compared with Model Sorted (Descrip-
tion), that received 20.6% Not Relevant ratings.
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Fig. 5. User study relevancy ratings by keyword group

The way in which student relevancy ratings played out with respect to the
within-group ranking of the keyword, based on model probability, is shown in
Fig. 6. The average relevancy rating (y-axis) by rank (x-axis) is plotted for each of
the three model-based approaches. Since the two random models do not involve
any model probabilities, they also are not associated with a rank. Therefore, they
are represented in the plot as horizontal lines corresponding to their averages
(Fig. 5). The Model Sorted (All) trend shows the highest average ratings at rank
1, followed by an apparent asymptote down to just above the average random
within-description level. Differences in ratings between these two at each rank
level are statistically significantly reliable except at ranks 3 and 4. The Model
Sorted (Non-Descrip) trend is initially above Random (Description) at rank 1,
but then dips down and asymptotes to a Neutral average rating of 3.

A premised benefit of the predictive model was to surface relevant keywords
that are not in a course’s description (Non-Descrip). If we were to highlight
inferred keywords, we would like to show only keywords that are “better” than
words chosen randomly from the description, or at least not show words statisti-
cally significantly worse. The Model Sorted (All) ratings are statistically reliably
higher than Random (Description) at ranks 1 and 2. We use this information to
tailor our strategy for when and how many inferred keywords to display in the
production version of our enhanced course search feature.

6.3 Selecting Inferred Keywords to Display in Search

With an improved understanding of the model predicted keywords’ relevancy, we
discuss how to leverage this information towards improving the search feature by
updating our inferred keyword selection criteria. In the prototype, the criterion
was to always display the top 10 model keywords, which did not exclude words
in the description. We continue to not exclude keywords from the description,
as showing them could serve the added benefit of a topic category source for
reference. Thus, we choose Model Sorted (All) for this analysis.

We leverage the observation that Model Sorted ratings correlate with rank to
investigate how well the underlying model probabilities of those words correlate
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Fig. 6. Keyword group rank vs relevancy

with student relevancy ratings. If there is a correlation, then the probabilities,
along with a threshold, could be used to dynamically determine which words
should be included as inferred keywords on a per course basis. To conduct an
analysis comparing model probabilities to user ratings, we normalize these two
sets of ratings using Z-scores and then average them by Model Sorted rank. We
find a substantive correlation between probability and rank and would like to
choose a threshold of probability from Model Sorted (All), such that all keywords
with that probability or above can generally be expected to produce keywords
perceived by students to be more relevant, on average, than a word chosen at
random from the description. The analysis in the previous section (Fig. 6) found
that user relevancy ratings for Model Sorted (All) were significantly higher than
Random (Description) at ranks 1 and 2. Therefore, we use the probability at rank
2 as the cut-off. Using this probability cut-off, we find 4.32 total words on average
expected to be displayed for each course, with 2.33 within-description words and
2.00 non-description words surfaced on average within these semantics.

7 Conclusion

We explored surfacing novel, searchable semantics of a course using an embed-
ding of courses informed by course selection histories, and supported our method-
ology through a user study to evaluate the relevancy of these keywords. Our
experiment contributes both methodologically to the use of embeddings to sur-
face latent semantic tags and to the design of data-driven information systems
in educational settings. Our process of interface prototyping, followed by offline
model optimization, user testing, and incorporation of study findings into the
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production software system can also serve as a design model and guide for other
technologies to tune data and technology enhanced analyses towards better stu-
dent learning and exploration experiences.
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